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Calculation of turbulent �uid �ow and heat transfer in ducts
by a full Reynolds stress model
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SUMMARY

A computational method has been developed to predict the turbulent Reynolds stresses and turbulent
heat �uxes in ducts by di�erent turbulence models. The turbulent Reynolds stresses and other turbulent
�ow quantities are predicted with a full Reynolds stress model (RSM). The turbulent heat �uxes are
modelled by a SED concept, the GGDH and the WET methods. Two wall functions are used, one for
the velocity �eld and one for the temperature �eld. All the models are implemented for an arbitrary
three-dimensional channel.
Fully developed condition is achieved by imposing cyclic boundary conditions in the main �ow

direction. The numerical approach is based on the �nite volume technique with a non-staggered grid ar-
rangement. The pressure–velocity coupling is handled by using the SIMPLEC-algorithm. The convective
terms are treated by the van Leer scheme while the di�usive terms are handled by the central-di�erence
scheme. The hybrid scheme is used for solving the � equation.
The secondary �ow generation using the RSM model is compared with a non-linear k–� model (non-

linear eddy viscosity model). The overall comparison between the models is presented in terms of the
friction factor and Nusselt number. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Channels of various cross-sections occur frequently in compact heat exchangers and gas
turbine cooling systems. Secondary motion of Prandtl’s second kind takes place in non-
circular straight ducts in the plane perpendicular to the main �ow direction and is driven by
the turbulence. These motions are of importance since they redistribute the kinetic energy,
in�uence the axial velocity and thereby a�ect the wall shear stress and heat transfer. A linear
k–� model does not have the ability to predict secondary �ows, but still it is one of the
most popular models due to its simplicity and decent overall properties. Adding non-linear
terms to the constitutive relation for the Reynolds stresses allows the model to predict more
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148 M. ROKNI AND B. SUND�EN

reliable anisotropic normal stresses, and then secondary �ows may be predicted without solving
additional equations.
A di�erential Reynolds stress model (RSM) is able to predict secondary �ows; however, the

increased complexity of the model may cause stability problems together with a signi�cant
increase in computational e�ort. In RSM modelling, the expression for the pressure-strain
tensor may be the most di�cult part to model since it plays a critical role in a variety of
turbulent �ows of engineering interest and it involves unmeasurable correlations. Consequently,
the development of RSMs to have a reliable predictive ability is essentially dependent on the
proper modelling of the pressure-strain correlation. The pressure-strain redistribution consists
of three parts, slow part, rapid part and the wall-re�ection term which follows exactly from
the Poisson equation for the pressure �uctuations (see, e.g. Reference [1]). The �rst two
parts are the volume integrals of the two-point correlations, whereas the last part represents
the surface integral and is e�ective only in the presence of a solid wall or an interphase
surface.
The wall-re�ection term is supposed to simulate the surface integral and has a net ef-

fect in the direction normal to a wall by damping the �uctuations only. Since this term
includes normal distances to walls, the application of wall-re�ection terms into a general
complex geometry is an uncomfortable task and seems not to be practicable, even for a mod-
erate complex geometry. For example, one can construct at any point of the �ow along a
right-angled corner, two directions normal to a wall. Therefore, it is desirable to propose
a model for the pressure-strain without the need for wall-re�ection terms or include their
e�ects into the other parts (rapid term). A few such models have been proposed. For in-
stance, Launder and Li [2] used a realizable cubic model for the rapid part and eliminated the
wall-re�ection terms. However, the pressure strain term which is used in this study and does
not need any wall-re�ection term, was presented by Speziale et al. [3], hereafter named as
the SSG.
Several fundamental investigations concerning turbulent �ow in square and rectangular ducts

exist in the literature. Rokni and Sund�en [4; 5] have successfully employed the non-linear k–�
model proposed by Speziale for predicting the �ow and heat �ux in straight and corrugated
ducts with trapezoidal cross-sections. Non-circular ducts have not been explored widely. De-
muren and Rodi [6] used algebraic expressions for the Reynolds stresses by re�ning the RSM
of Launder et al. [7] to predict the secondary motions in square ducts. Mompean et al. [8]
used several non-linear eddy viscosity models to predict the secondary �ows in a square duct.
Naimi and Gessner [9] and Myong and Kobayashi [10] studied also �ow in a square duct
without showing secondary motions vectors. Launder and Li [2] indicated how to eliminate
the wall-topography (wall-re�ection of the pressure-strain) from the RSM models and then
the secondary �ows in square and rectangular ducts. However, all these studies concerned
ducts with orthogonal cross-sections (square and rectangular) and no study on 3D ducts with
non-orthogonal cross-section is available in the open literature using RSM, as the literature
survey of the authors showed.
This investigation concerns numerical calculation of turbulent forced convective heat transfer

and �uid �ow in straight ducts at fully developed conditions. In this paper the authors have
developed a computational method to predict the turbulent Reynolds stresses and turbulent
heat �uxes in ducts using a full di�erential Reynolds stress model (RSM). The results are
compared with those predicted by the standard k–� model and the non-linear k–� model of
Speziale [11]. The turbulent heat �uxes are modelled with the simple eddy di�usivity (SED)
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TURBULENT FLOW AND HEAT TRANSFER IN DUCTS 149

concept, GGDH and WET methods in arbitrary three-dimensional channels. The combination
of a RSM model for the �uid �ow with GGDH and WET models for the heat �uxes has not
been found in the literature and this is a unique feature of this paper.
One di�culty associated with turbulent convective heat transfer and �uid �ow in ducts

is obtaining satisfactory results for both friction factor and Nu-number, if wall functions are
used. Usually, either friction factor or Nu-number can be predicted satisfactory, not both of
them.
Although the RSM calculation procedure developed in this study does not need any normal

wall distance for the Reynolds stresses but wall functions are used for the velocity and
temperature �elds. This implies that the limitation is the wall functions demanding that the
y+ adjacent to a solid wall should be greater than about 30. However, in many industrial
applications the number of grid points used near a wall are few (due to limitation of cost and
time) and the y+ near the solid wall automatically are greater than about 30.

2. PROBLEM STATEMENT

Straight ducts with arbitrary cross-sections are considered in this investigation. Mean veloc-
ity distribution, turbulent quantities, friction factors and Nu-numbers are determined numeri-
cally for fully developed conditions. The secondary �ow generation is also of major concern.
The following assumptions are employed: steady state, no-slip at the wall and constant �uid
properties.
Only one quarter of the ducts with square and rectangular cross-sections and only half of

the duct with trapezoidal cross-section are considered by imposing symmetry conditions. A
principle sketch of a duct is shown in Figure 1.

Figure 1. Ducts under consideration.
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3. GOVERNING EQUATIONS

The governing equations are the continuity, momentum equations and energy equation at
steady state.
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Fully developed periodic turbulent �ows with constant �uid properties are considered. The
turbulent stresses (−�uiuj) and the turbulent heat �uxes (�cpujt) are modelled as described
in the following sections.

3.1. Full Reynolds stress modelling (RSM)

The Reynolds stress tensor (−�uiuj) is a solution of the transport equation as expressed below,
(in Cartesian co-ordinate system)
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are production, pressure-strain correlation, dissipation rate tensors and third-order di�usion
correlation. Using the Kolmogorov assumption of local isotropy, the dissipation rate tensor
can be expressed as

�ij=
2
3
��ij (7)

where � is the scalar turbulent dissipation rate. Speziale et al. [3], hereafter named as the
SSG model, presented the following expression for the pressure-strain tensor, which does not
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need any wall re�ection
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The mean strain-rate Sij, the rotation tensor �ij, the anisotropy tensor bij, the tensor invariant
�ij and ˝ are expressed as
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The constants C1 = 3:4 and C2 = 4:2 in this model are based upon realizability, dynamical
systems considerations, and phase space portrait of return to isotropy experiments. However,
C∗
1 = 1:80, C

∗
3 = 1:30, C4 = 1:25 and C5 = 0:40 are obtained by numerical optimization. Rapid

distortion theory (RDT) gave C3 = 0:8, see Reference [3].
A simple Eddy viscosity (SEV) model based on the Boussinesq approximation calculates

the third-order di�usion correlation

Cijk =−��
�c
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@xk

; �c=1 (10)

Now it is evident that the RSM model can include the history-dependent non-local e�ects
of the �ow through convection and viscous di�usion of the Reynolds stresses. Further, these
models can also qualitatively respond to streamline curvature, system rotation and strati�cation
since they contain convection, production and body force. Moreover, the RSM model gives
no reason for the normal stresses to be equal even if the mean strain rate vanishes.

3.2. Non-linear Eddy viscosity model (NLEVM)

A non-linear constitutive relation for the eddy viscosity in incompressible �ow proposed by
Speziale [16] is also considered in this investigation. The non-linear terms in this model
are a form of quadratic terms, which enable calculation of anisotropic normal stresses and
consequently prediction of the secondary velocity �eld in ducts. The Reynolds stresses in this
model are determined according to
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and Ṡ ij is the frame-indi�erent Oldroyd derivative of Sij, expressed as
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In Equation (11), CD=CE =1:68.
Three key-criteria that guarantee consistency with certain properties of the exact Navier–

Stokes equation are satis�ed by this model; general co-ordinate and dimensional invariance,
limited form of realizability and material frame indi�erence in the limit of two-dimensional
turbulence (see Reference [12]).

3.3. Turbulence models for heat �uxes

Three models are used to express the turbulent heat �uxes.
(a) Simple Eddy di�usivity (SED) based on the Boussinesq viscosity model as

�ujt=− ��
�T
@T
@xj

(13)

This model is the most common one in commercial codes. The main drawback of it is that
the di�usivity is independent of the direction, i.e. isotropic. As an e�ect the temperature �eld
contours have a similar shape as the main �ow contours in duct �ows, whether the main �ow
contours are wrongly or correctly predicted (dependent on the main �ow contours).
(b) The Generalized gradient di�usion hypothesis (GGDH) expressed by Daly and Harlow

[13],
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(c) Wealth � earnings × time (WET) given by Launder [14].
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where fjt is the buoyancy-driven heat �ux and is zero in this case.
The constant Ct is set to 0.3 in both GGDH and WET. The advantages of the two last

models are that they take into account the anisotropic behaviour of the heat transport in duct
�ows, independent on the main �ow contours. However, these two models demand second
order accuracy for the shear stresses. For example, they cannot generally be used with the
LEVM in duct �ows. Sometimes they may provide convergence problem in very complicated
duct �ows.

3.4. Equations for kinetic energy and its dissipation

From the above equations it is evident that the equations for the turbulent kinetic energy and
its dissipation should also be solved. The transport equation for the kinetic energy and its
dissipation are calculated by
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where �k =1:0, ��=1:314, C�1 = 1:44 and C�2 = 1:83. The term Pk is the production term
expressed as

Pk =−�uiuj @Ui@xj
(18)

The turbulent eddy viscosity �� is calculated as

��=�C�
k2

�
; C�=0:09 (19)

It should be noted that if RSM is used for the calculations then the equation for the kinetic
energy could be solved in two ways:

(1) Solve for all the Reynolds stresses and let k=0:5(uu+ vv+ ww)
(2) Solve for kinetic energy and let one of the normal stresses (e.g. uu) be set to

uu=2k − (vv+ ww)

3.5. Periodic conditions

The pressure P is handled as

P(x; y; z)=−�x + P∗(x; y; z) (20)

where � is a constant representing the non-periodic pressure gradient and P∗ behaves in a
periodic manner from cycle to cycle in the �ow direction.
The dimensionless temperature 	 is de�ned in the cyclic case as

	(x; y; z)=
T (x; y; z)− Tw
Tb(x)− Tw (21)

where Tw is the constant wall temperature and Tb is the �uid bulk temperature. Using this
expression and inserting it into the energy equation (3) one obtains in the steady state
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In Equation (24) 
 is
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The di�usion coe�cient 	 is 	=�=Pr. The parameters 
 and � behave periodically.
In the GGDH method, ujt is calculated from
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In the WET method ujt, is determined from
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An additional condition is needed to close the problem since the energy equation contains
two unknowns 	(x; y; z) and 
(x). This condition can be obtained from the de�nition of the
bulk temperature. In dimensionless form one has

∫
|U |	 dAc =

∫
|U | dAc (28)

where Ac is the cross-sectional area perpendicular to the main �ow direction. The shape of
the non-dimensional temperature pro�le 	(x; y; z) repeats itself in the fully developed periodic
region.

3.6. Boundary conditions

Periodicity conditions are imposed at the inlet and outlet for all variables. It then follows

�(x; y; z) =�(x + L; y; z)

�=U;V;W; P∗; k; �; 	; uiuj (29)

In order to achieve numerical stability, the following variables are also handled as periodic:
uj	; 
; Sij.

3.7. Wall functions for momentum equations

The dissipation equation given in Equation (17) is valid for high Reynolds number only.
Of course, it is possible to use damping functions in the dissipation equation and bridge it
to a solid boundary. However, such damping functions need the wall-normal distance to a
solid boundary which is not the subject of this study. Therefore, wall function treatment is
used for the momentum equations. Furthermore, additional studies are needed to con�rm how
to remove the damping functions from the dissipation equation and still bridge it to a solid
wall without using wall functions. Because, the dissipation equation has no natural boundary
condition, it would be extremely di�cult.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:147–162



TURBULENT FLOW AND HEAT TRANSFER IN DUCTS 155

The law of the wall is assumed to be valid for both the �ow and temperature �elds in the
near wall region. It is assumed that the region near the walls consists of only two layers, the
viscous sublayer in which the turbulent viscosity is much smaller than the molecular viscosity
and the log layer in which the turbulent viscosity is much greater than the molecular viscosity.
The bu�er layer is ignored. The traditional law of the wall is de�ned as

U+ =
U
U ∗

∼= 1
�
ln y+ + B=

1
�
ln(Ey+) (30)

where

y+ =
�U ∗�
�

(31)

and � is the distance normal to the wall. The von Karman constant is �=0:4 while the value
of E for a smooth wall is E=9:8.
The point y+ =11:90 is used to dispose the intersection (transition) between the viscous

sublayer and log layer. Below this point the �ow is assumed to be purely viscous (i.e. the
turbulent stresses are negligible), and above this point the �ow is assumed to be purely
turbulent. The details can be found in Reference [4].

3.8. Wall functions for temperature equation

A similar treatment is applied to the temperature equation at the grid point adjacent to a
wall. The heat �ux close to the wall is assumed to be constant. The law of the wall for the
temperature �eld is de�ned as

T+ =
(Tw − Tp)�cpU ∗

qw
=
1
�t
ln y+ + Bt (32)

where �t =0:46 suggested by Launder [14] is used here. For a cold wall and a medium with
Pr=0:72, the value of Bt is Bt =2:0, see Reference [15]. The point T+ =5:83 is used here
to dispose the intersection between the sublayer and the log layer. The transport equation
reduces to:

q=(	1 + 	�)cp
@T
@�
= qw (33)

(a) if T+¿5:83 where 	�=	1�1, q∼= qw
The transport of heat is assumed to be entirely due to turbulence. qw is calculated by using

the following relation

qw
cp
=
�U ∗(Tw − Tp)

T+
(34)

(b) if T+65:83 where 	�=	1�1, q∼= qw
The transport of heat is then assumed to be only due to molecular activity. qw is calculated

by using the following relation:

qw
cp
=

�
�Pr

(Tw − Tp) (35)
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3.9. Near wall treatment of the Reynolds stresses

The Reynolds stresses are set in a local stream aligned with a co-ordinate system with
n=(nx; ny; nz) and t=(tx; ty; tz) as base unit vectors. n is the unit wall normal vector and
t is the unit wall tangential vector and is aligned with the �ow. The cross product of these
vectors gives the third component in this orthogonal set. A simple co-ordinate transformation
will then give the following stresses at the point adjacent to a wall, see Reference [16]:

uu= t2x (uu)
′ + n2x(vv)

′ + 2txnx(uv)′

+ t2yn
2
z (ww)

′ − 2tynztzny(ww)′ + t2z n2y(ww)′

vv= t2y(uu)
′ + n2y(vv)

′ + 2tyny(uv)′

+ t2z n
2
z (ww)

′ − 2tznxtxnz(ww)′ + t2x n2z (ww)′

ww= t2z (uu)
′ + n2z (vv)

′ + 2tznz(uv)′

+ t2x n
2
y(ww)

′ − 2txnytynx(ww)′ + t2yn2x(ww)′

uv= txty(uu)′ + (txny + tynx)(uv)′ + nxny(vv)′

+ txnz(tzny − tynx)(ww)′ + tznx(tynz − tzny)(ww)′

vw= tytz(uu)′ + (tynz + tzny)(uv)′ + nynz(vv)′

+ txny(tznx − txnz)(ww)′ + tynx(txnz − tznx)(ww)′
wu= tztx(uu)′ + (tznz + txnz)(uv)′ + nznz(vv)′

+ tynz(txny − tynz)(ww)′ + tznz(tynx − txny)(ww)′ (36)

At the node adjacent to a wall the dissipation rate is set to �=U 3
∗ =(k�wall) and the stresses

are set as (uu)′=1:098k, (vv)′=0:247k and (uv)′=−0:255k (see, e.g. Reference [7]) where
k=U 2

∗ =
√
C�. U∗ is computed from the wall functions.

3.10. Additional equations

Some additional equations have been used to calculate the Reynolds number, mass �ow, the
bulk velocity, pressure drop, Fanning friction factor and Nusselt number. The details of such a
calculation procedure can be found in Reference [4]. Experiments carried out by Lowdermilk
et al. [17] showed that the Nu-number in square ducts can be correlated with the Dittus–
Boelter correlation (for about Re¿8000) and the friction factor can be correlated with the
Prandtl friction law.
The calculated friction factor is thus compared with the Prandtl friction law (see Reference

[18]) as

1√
4f
=2 log(Re

√
4f)− 0:8 (37)
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The Re-number is based on the hydraulic diameter

3 Walls⇒Dh =
4Across

a+ b+
h

sin ’

(trapezoidal)

2 Walls⇒Dh =
4Across

a+
h

sin ’

(square; rectangular) (38)

where a, b, h and ’ are base-length, upper-length, height and base-angle, respectively.
The Nu-number is calculated in two ways: (1) by calculating the local Nu-number at each

point adjacent to a wall and then integrate these over all the walls (Nux), (2) by using the
periodic conditions and calculate the overall Nu-number by a heat balance equation (Nuov).
These are called local and overall Nu-numbers, respectively. The details of this procedure can
also be found in Reference [19]. The calculated Nu-numbers are compared with the Dittus–
Boelter correlation (see Reference [18]) as

Nu=0:023Re0:8Pr0:3 for Re¿8000 (39)

The Nu values calculated by these two methods should ideally be very close to each other.
If not, something is not properly considered, for example the y+ value near the walls. The
di�erences between these two calculated Nu-numbers are less than 1% for all cases considered
in this study.

4. NUMERICAL SOLUTION PROCEDURE

The partial di�erential equations are transformed to algebraic equations by a general �nite-
volume technique. The momentum equations are solved for the velocity components on a non-
staggered grid arrangement. The Rhie–Chow interpolation method [20] is used to interpolate
the velocity components to the control volume faces from the grid points. The SIMPLEC-
algorithm is employed to handle the pressure velocity coupling. A modi�ed strongly implicit
procedure (SIP) algorithm is used for solving the equations. The convective terms are treated
by the QUICK scheme while the di�usive terms are treated by the central-di�erence scheme.
The hybrid scheme is used for solving the k and � equations.
A non-uniform grid distribution is employed in the plane perpendicular to the main �ow

direction. Close to each wall, the number of grid points or control volumes is increased to
enhance the resolution and accuracy. The Prandtl number was set to 0.72 and the computations
were terminated when the sum of the absolute residuals normalized by the in�ow was less
than 10−4 for all variables with the RSM model and less than 10−5 with the non-linear model.
It should be noted that the average y+-value adjacent to a wall is between 40 and 44 in

all the calculations. This has been secured in the calculations since it is well known that
the results obtained with wall functions are dependent on the y+-value and the best results
may be obtained when the y+-value at the point adjacent to a wall is larger than about
35. A more complete discussion about the y+-value at the point adjacent to a wall can be

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:147–162



158 M. ROKNI AND B. SUND�EN

found in Reference [4]. Di�erent set of grid arrangement is used to ensure that the results are
independent of the number grids and grid arrangement.
The calculations showed that the SSG model is only weekly dependent on the y+-value

near the walls.

5. RESULTS AND DISCUSSIONS

5.1. Square ducts

The predicted secondary velocity �eld using the SSG model compared with the non-linear
k–� model is shown in Figure 2. The non-linear model predicts the secondary motion very
well and almost in consistent with the RSM model. A comprehensive comparison between the
predicted secondary motions and experimental results, direct numerical simulation and large
Eddy simulation can be found in Reference [4].
Table I shows the calculated Fanning friction factor and Nu-number in comparison with the

existing correlations, for two di�erent Re-numbers. Excellent agreement between the calcula-
tions and the correlations has been obtained for the friction factor and the Nu-number if the
heat �uxes are calculated by the GGDH and the WET methods. However, the SED model
deviates somewhat from the Dittus–Boelter correlation.
Figure 3 shows the streamwise velocity contours predicted by the SSG model compared with

the non-linear k–� model. In the region close to the corner, the contours are bulged towards
the corner due to the presence of the secondary motions. As can be seen from Figure 3, the
non-linear k–� model shows less bulging towards the corner which means that the secondary
motions are somewhat underestimated. To reveal how the bulging a�ects the prediction of the

Figure 2. Secondary velocity �eld predicted by the RSM and the non-linear k–� model. Re=33472.
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Table I. Calculated Nu-numbers and Fanning friction factors by the RSM (SSG) model compared
with the Dittus–Boelter and Prandtl friction law correlations in a square duct.

Model Re Nu NuDB Di�% f× 103 fPra × 103 Di�%

SED 23261.9 58.3 64.9 10.2 6.374 6.238 −2:2
GGDH ” 65.0 64.9 0.0 6.374 6.238 −2:2
WET ” 64.8 64.9 0.2 6.374 6.238 −2:2

SED 33472.0 76.7 86.8 11.7 5.598 5.723 2.2
GGDH ” 85.9 86.8 1.1 5.598 5.723 2.2
WET ” 85.6 86.8 1.4 5.598 5.723 2.2

Di� = 100× (correlated − calculated)=correlated.

Figure 3. Streamwise velocity contours. Re=33472.

friction factor and the Nu-number, Table II is presented. As can be seen from the table the
a�ect of these bulging on the overall properties, Nu-number and friction factor are small and
negligible.
As shown in Table II, the friction factors and the Nu-numbers predicted by the non-linear k–

� model also agree reasonably with the correlation. However, the non-linear model converges
much faster and the residuals can be smaller than for the RSM model.

5.2. Trapezoidal ducts

Figure 4 shows the predicted secondary velocity motions in a trapezoidal duct using the
RSM model and the non-linear k–� model. Even here, the non-linear model predicts the
secondary motions similar to the RSM model. However, the secondary motions are somewhat
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Table II. Calculated Nu-numbers and friction factors by the RSM (SSG) model compared
with the non-linear k–� model of Speziale and the correlations in a square duct.

Model Re Nu Di�% fPra × 103 Di�%

RSM + (GGDH) 23261.9 65.0 0.0 6.238 −2:2
Non-linear + (GGDH) 23839.9 59.6 9.9 6.632 −6:9

RSM + (GGDH) 33472.0 85.9 1.1 5.598 2.2
Non-linear + (GGDH) 33543.2 78.7 9.6 6.131 −7:2
Di� = 100× (correlated − calculated)=correlated.

Figure 4. Predicted secondary motions by the RSM model as well as the non-linear model
k–� model in a trapezoidal duct.

underestimated by the non-linear model, see Figure 5. Therefore, the bulging towards the
corners is less evident in the non-linear model than in the RSM model. This is so, because
the temperature �eld is strongly dependent on the prediction of the main �ow, the bulging
near the corner of the temperature �eld will also be less evident for the non-linear case than
for the RSM case (not shown here).
In addition, the calculation time by the RSM model is about twice that of the non-linear

model in this case as well as in previous cases.

6. CONCLUSIONS

A full Reynolds stress model (RSM) and heat transfer model have been successfully applied
for numerical investigation of turbulent �ow in straight ducts. The non-linear eddy viscosity
model of Speziale was found to underestimate the secondary �ow compared to the RSM. The
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Figure 5. Streamwise velocity contours in a trapezoidal duct using the RSM
model and the non-linear model k–� model.

turbulent heat �uxes are modelled with SED, GGDH and WET methods (the latter two provide
the most accurate results). Wall functions for the momentum equations and the temperature
�elds are employed, separately, and Jayatilleke’s P-function is abandon.
The average friction factors predicted by the RSM model agree excellent with the Prandtl

friction law correlation. The calculated Nu-numbers obtained by the GGDH and WET concepts
are in good agreement with the Dittus–Boelter correlation. However, the SED underestimates
the Nusselt numbers compared to this correlation.
One important conclusion of this investigation is that the non-linear eddy viscosity model

is able to predict the friction factor and the Nu-number is in decent agreement with the RSM
model but with considerably less computational e�ort and time. Moreover, the secondary
motions predicted by the non-linear model is very similar to the one predicted by the RSM
model.
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